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Abstract
Privacy regulations such as the General Data Protection

Regulation (GDPR) require websites to inform EU-based
users about non-essential data collection and to request their
consent to this practice. Previous studies have documented
widespread violations of these regulations. However, these
studies provide a limited view of the general compliance
picture: they are either restricted to a subset of notice types,
detect only simple violations using prescribed patterns, or
analyze notices manually. Thus, they are restricted both in
their scope and in their ability to analyze violations at scale.

We present the first general, automated, large-scale analy-
sis of cookie notice compliance. Our method interacts with
cookie notices, e.g., by navigating through their settings. It
observes declared processing purposes and available consent
options using Natural Language Processing and compares
them to the actual use of cookies. By virtue of the generality
and scale of our analysis, we correct for the selection bias
present in previous studies focusing on specific Consent Man-
agement Platforms (CMP). We also provide a more general
view of the overall compliance picture using a set of 97k web-
sites popular in the EU. We report, in particular, that 65.4%
of websites offering a cookie rejection option likely collect
user data despite explicit negative consent.

1 Introduction

More than 90% of websites track their users and collect their
personal data [44]. Their reasons range from personalizing
advertisements to gaining insights into how the websites are
used and their visitors’ demographics.

To deter privacy-intrusive practices, privacy regulations
were introduced in the European Union (EU), including the
General Data Protection Regulation (GDPR) and the ePrivacy
Directive. These laws mandate, in particular, that websites
inform users about the explicit purposes for which their data
is collected. They also require websites to have a legal basis,
such as user consent, for their data collection practices. This

has led to the global adoption of cookie notices, which are
now unavoidable when browsing the web.

To understand how websites have reacted to and adopted
the GDPR, various studies have been conducted [4, 31, 38,
41, 45, 50]. However, these studies were either not general or
not at scale, as they had at least one of the following major
limitations. First, they did not interact with cookie notices.
Cookie notices take a variety of shapes and forms and of-
ten include interactive elements that allow users to accept
or reject cookies, dismiss the notice, or navigate to layers
containing fine-grained settings. Second, some of the studies
were conducted manually, limiting them to too few websites
to provide statistically significant observations. We particu-
larly observe this limitation in studies focusing on deceptive
design patterns (or dark patterns), which undermine legal
requirements by tricking users into consent against their inten-
tions [5,22,25,41,44,48,52]. Finally, some automated studies
are subject to a selection bias because they only analyze
websites employing specific Consent Management Platforms
(CMP). This bias is prevalent because it is challenging to au-
tomate the analysis of all websites given how diverse website
implementations are.

Our work1

Our work addresses all three limitations. We automate and
generalize the analysis of websites’ non-compliance with the
GDPR by developing a crawler that interacts with cookie
notices in a general way using machine learning. Our crawler
is independent of specific CMP implementations and can
navigate through the notice layers.

Generalizing and scaling up the analysis of GDPR com-
pliance requires, in particular, the automation of three tasks:
navigating cookie notices, analyzing their natural language,
and attributing usage to cookies. We train three machine learn-
ing models for each of these tasks. The first model classifies
elements of cookie notices that users can interact with and

1The source code will be made available at https://
ahmedbouhoula.github.io/post/automated.html.

https://ahmedbouhoula.github.io/post/automated.html
https://ahmedbouhoula.github.io/post/automated.html
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Figure 1: Overview of the process involved in our study.

was trained on a dataset of 2.4k samples that we annotated.
The second model detects and classifies cookie purposes in
the text and was trained on a dataset provided by Santos et
al. [45]. The third model extends the work of Bollinger et
al. [4] and allows us to detect when a website sets cookies
that require the user’s consent.

Our generalization allows us to conduct a large-scale study
on 97k websites in eleven EU languages. This improves
upon past studies in several respects. First, our reporting is
independent of the cookie notice implementation method and
is therefore not prone to a selection bias like past studies.
Second, by using Natural Language Processing (NLP) and
heuristics, we can analyze the browser-rendered cookie no-
tices as users observe them, unlike methods depending on the
implementation of CMPs. This enables the detection of more
comprehensive violations and the automated analysis of dark
patterns. Third, our method is more suitable for reproducibil-
ity and long-term studies than past works depending on CMP
implementations, which are subject to change over time. This
will enable the analysis of compliance-shaping events. For
instance, legal scholars can measure compliance before and
after new regulations or court decisions, and browser vendors
can observe the impact of events like the discontinuation of
third-party cookies.

Using the trained models and observed usage of cookies by
the websites, we report on various discrepancies associated
with potential violations of users’ privacy. Namely, we show
that 56.7% of cookie notices do not include an option to opt
out of consent, that more than 65.4% of websites with an opt-
out option collect users’ data despite explicit negative consent,
and that 73.4% of websites do so even when users do not inter-
act with the cookie notice. These violations were investigated
by prior works with vastly different outcomes depending on
the CMPs they considered. We inspect the selection bias and
present results that are independent of the technologies used
to implement the cookie notice. Our method also allows us to
highlight a novel violation, namely that 26.1% of websites do
not declare adequate data collection purposes in their cookie
notices.

The generality of our approach paves the way for various
types of aggregated analyses such as popularity-based and
country-level analyses. As an example, we show that while
more popular websites are more likely to contain cookie no-

tices and these notices are more likely to include a “Reject”
button and adequate purposes, they are also more likely to
ignore the choices that users select and track them anyway.

Contributions

• We develop a general method for the automated analysis
of GDPR violations and dark patterns at scale, regardless
of websites’ implementations.

• We conduct the largest case study to date on cookie
purpose compliance, covering 97k websites. Our sample
is heterogeneous and removes the selection bias specific
to a subset of websites implementing certain CMPs, as
is shown by our results.

• We report on potential GDPR violations and dark pat-
terns. For instance, we find that 65.4% of websites do
not respect users’ negative consent and that top-ranked
websites are more likely to ignore users’ choices despite
having seemingly more compliant cookie notices.

2 Study overview

Fig. 1 provides an overview of our study. We collected a
dataset of 97k websites within the GDPR’s jurisdiction us-
ing the Chrome User Experience Report (CrUX) [10] from
March 2023. Our crawler (Section 3) visits each website
and, if the detected language is one of eleven supported lan-
guages, it then searches for a cookie notice. If one is found,
the crawler interacts with it, extracting its text, detecting con-
sent options (e.g., “Reject” or “Close”), and extracting stored
cookies. The detection of consent options relies on a ma-
chine learning model (Section 4.2) that classifies interactive
elements—i.e., elements that users can interact with. The
data collected by the crawler is further analyzed using two
machine learning models: The first model (Section 4.1) pre-
dicts whether a cookie notice declares purposes for analytics
or advertising (AA purposes). The second model (Section 4.3)
predicts whether a website actually uses cookies for analytics
or advertising (AA cookies).

The results of the crawler and machine learning models
serve as input for a decision tree to uncover potential GDPR
violations (Section 5.1). For example, we determine whether
a website uses AA cookies despite explicitly rejecting consent



and whether a website declares adequate purposes when AA
cookies are used. A similar decision tree (Section 5.2) is used
to uncover potential dark patterns that may deceive users and
nudge them towards accepting consent.

We repeat results from previous studies that limited the
analysis to websites using specific CMPs and show that they
suffer from a selection bias (Section 6). We also manually
inspect 500 websites and present an end-to-end evaluation of
our detection of violations and dark patterns (Section 7).

3 Crawler

In this section, we describe our implementation of a web
crawler that detects cookie notices, extracts their text and
interactive elements, and stores the cookies observed while
using the website. The crawler is implemented as an extension
of the OpenWPM framework [13].

3.1 Language support

Measuring GDPR cookie consent violations requires multi-
lingual support for websites in different EU countries and the
UK.2 Our pipeline relies on spaCy models [27] for part-of-
speech tagging and on other models that we train on English
datasets. For non-English texts, we use the open-source ma-
chine translation API LibreTranslate3.

Both spaCy and LibreTranslate support the following EU
languages: Danish, German, English, Spanish, Finnish,
French, Italian, Dutch, Polish, Portuguese, and Swedish. Al-
though Greek is also supported by both, LibreTranslate fails
to translate basic cookie notice phrases, so we did not include
Greek websites in our analysis. We summarize the language
support in the Appendix in Table 3.

As the crawl starts, we detect the website’s language using
the langdetect4 library, which supports all of the selected
languages. We stop crawling a website when its content is
not in one of the eleven selected languages.

3.2 Cookie notice detection

We first identify a set of potential HTML elements, i.e., web-
page components that are likely to be cookie notices, and then
we filter these elements.

Identifying candidate cookie notice elements. We employ
two methods to identify candidate cookie notice elements,
inspired by the works of Kampanos et al. [31] and Khandelwal
et al. [32].

2The UK GDPR is almost identical to the EU GDPR and, in addition,
some websites might still be obliged to apply the EU GDPR when visited
from an EU IP address as we do.

3https://github.com/LibreTranslate/LibreTranslate
4https://github.com/Mimino666/langdetect

We first look for elements that match identifiers from the
EasyList Cookie list, which is a crowd-sourced list used by
adblockers to hide cookie notices. It contains a list of selectors
that identify cookie notice HTML elements.

However, cookie notice detection based on this list results
in both false positives and false negatives. False positives
stem from websites where the selectors match multiple dif-
ferent elements that are not cookie notices. False negatives
result from the list’s incompleteness. For example, some
websites have element identifiers that change constantly. For
other websites, removing the cookie notice may break their
functionality.

To detect more cookie notice candidates, we follow Khan-
delwal et al. [32] and inspect the z-index attribute of HTML
elements, which indicates how elements are positioned with
respect to each other. Since cookie notices are usually on top
of other elements, we add elements with a positive z-index to
our list of candidates.

Filtering detected elements. The list of candidates may
include elements that do not correspond to cookie notices.
To find a cookie notice element, we look for an element that
contains the word “cookie” in a sentence that has a verb using
a part-of-speech tagger. For this, we use language-specific
spaCy models and language-specific variations of the word
“cookie.”

Note that Kampanos et al. [31] looked for elements that
mention “cookie” without any additional filtering step. This
may yield false positives when page footers contain “cookie
policy” or “cookie preferences” links. We compare our
method for cookie notice detection to both Kampanos et al.
and Khandelwal et al. in Appendix A.

3.3 Cookie notice exploration
Once a cookie notice is detected, we explore its content by
browsing its subpages, and we collect cookies after providing
different types of consent, depending on the options given by
the notice.

3.3.1 Text extraction

We view the cookie notice as a graph where each node corre-
sponds to a state of the webpage that is reached by clicking on
some sequence of interactive elements e1, ...,ei. We extract
the text of the cookie notice by exploring this graph using
depth-first search (DFS).

After clicking on ei, we have 3 possible scenarios:

• A new cookie notice element appears (e.g., after clicking
on “Cookies Settings”). We use our cookie notice detec-
tion module to detect when this happens. In this case,
we extract its text and its interactive elements and add
them to the DFS stack of elements to be subsequently
explored.

https://github.com/LibreTranslate/LibreTranslate
https://github.com/Mimino666/langdetect


• Minor changes occur to the cookie notice element (e.g.,
we check a box or uncover more text). In this case, we
add the newly discovered text to the set of extracted texts,
if there is any.

• The cookie notice disappears, e.g., after clicking on “Ac-
cept” or “Close.” In this case, we clear the browser’s
cache and cookies as this is crucial to ensure the cookie
notice appears again when exploring further nodes. Web-
sites usually store consent information in the browser to
prevent the cookie notice from reappearing.

Since many elements only appear after clicking on a spe-
cific sequence of other elements, we define each node of the
graph by the sequence of interactive elements e1, ...,ei that
lead to it. We explore such a node by reloading the website
and clicking consecutively on the elements in the sequence.

To extract interactive elements, we filter those with a non-
negative tabindex attribute as these are accessible with tab-
bing. We also include DIV elements with a role attribute
set to button, or a non-null onclick attribute. We use CSS
selectors for element identification, which we retrieve using
an open-source npm library.5 For each explored node, we
store newly uncovered text and translate non-English text to
English using LibreTranslate.

Note that since the exploration tree can become very large,
we set the maximum search depth to two and limit the maxi-
mum number of explored children per node to 50. For each
node, if there are more than 50 interactive elements, we sort
them in the order of their appearance in the HTML DOM
and only keep the first 25 and last 25 elements. We assume
that the skipped elements in the middle are repetitive in their
content. A common case where we detect hundreds of in-
teractive elements is when cookie notice subpages include
information about all third-party vendors. Note that, in our
experiments, the elements at the first layer of cookie notices
are never truncated, whereas they are only truncated 3.2% of
the time at the second layer.

3.3.2 Consent option detection and cookie extraction

We add structure to the cookie notice exploration using an
interactive elements classification model, explained further
in Section 4.2. Given the text of an interactive element, the
model classifies it as: (1) a consent option among accept, re-
ject, close, or save; (2) a settings button; or (3) other (negative
sample). Fig. 2 shows an example of applying the interactive
elements model to a cookie notice. We employ this model
to detect consent options and associate them with the set of
cookies stored by the websites when we interact with them.

If an element is classified as a consent option, we override
this classification if it does not make the cookie notice dis-
appear. This verification step increases the reliability of our
method for consent options detection. It allows for filtering

5https://github.com/autarc/optimal-select
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DECLINE COOKIES

Reject
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SaveAccept
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Figure 2: Example of a cookie notice with annotated inter-
active elements. Fig. 2a illustrates the first layer of a cookie
notice. Clicking on the “Cookies settings” button uncovers
the second layer, shown in Fig. 2b. Both figures are anno-
tated in red with labels of positive samples of the interactive
elements classifier. Links, toggle switches, and other unanno-
tated interactive elements correspond to negative samples.

negative samples that are classified as consent options. It
also allows for filtering elements with correctly classified text
that correspond to options for individual settings, e.g., toggle
switches, that users must interact with before clicking on a
consent option that makes the cookie notice disappear.

For each filtered consent option, we extract the set of cook-
ies resulting from interacting with it. After clicking on the
element, we extract cookies following a strategy similar to
Bollinger et al. [4]. We first browse the website by visiting
random subpages—not including links in the cookie notice—
and scrolling down to the bottom of each subpage. Then, we
extract the cookies set with the Cookie Instrument provided
by OpenWPM, which automatically collects cookies that are
set by JavaScript or HTTP Responses. The browsing step
is important. Urban et al. [51] showed that it increases the
number of detected cookies by 36%.

In summary, we collect cookies in five independent crawl-
ing steps, depending on the available actions: accepting cook-
ies, rejecting cookies, closing the notice without providing
consent, saving the default choices, and not interacting with
the notice. We infer from this information whether websites
honor user choices as explained in Section 5.

https://github.com/autarc/optimal-select


3.4 Deployment
To ensure that the websites crawled are under GDPR jurisdic-
tion, we select websites that target EU or UK users and we
crawl from an IP address located in the EU.

We considered websites from the Chrome User Experience
Report [10] (CrUX). The dataset is based on anonymously
collected user browsing histories. Although the dataset has
potential biases as it only represents the data of users who opt-
in to data collection, Ruth et al. [43] show that it represents
website popularity significantly better than alternatives such
as Alexa [1] or Tranco [37].

We collect websites with the popularity ranks 1k, 5k, and
10k, from the country-level CrUX datasets of 15 countries
(see Table 3). This results in a crawling list of 97,090 websites.
We crawl websites using 30 German datacenter IP addresses
provided by The Bright Initiative from Bright Data [6]. We
noticed no significant increase in the error rate when crawling
using datacenter or ISP proxies.

We run the crawl on a consumer-grade PC with an AMD
Ryzen 9 5950X CPU. This 16-code CPU allows us to run
30 OpenWPM browsers in parallel, achieving a crawling
speed of 300 websites per hour. The crawl is not network-
constrained and we only transfer 10 Mbit/s on average.

Ethical considerations We ignore robots.txt which we
believe is meant for search engines and not research crawlers.
As per the ethics committee at our institution, we do not
require ethics approval for our crawling study since it does not
involve human subjects. Moreover, our crawl does not harm
website owners, since the computational costs are negligible
and our findings are published in aggregated form without
exposing individual websites. Regarding the legal aspect,
we considered different legal regimes and concluded that our
research does not violate laws such as fraud, trespass, or
breach of contract since our intentions are to carry out good-
faith privacy research.

4 Machine learning models

To automate the detection of violations and dark patterns, we
develop machine learning models. These models are used
to detect declared cookie purposes in the cookie notice text,
to assist in crawl navigation using the interactive elements
of the cookie notice, and to detect whether the website uses
AA cookies appropriately. In this section, we present these
models and how we trained them.

4.1 Declared purpose detection model
The GDPR requires websites to declare the purposes for data
collection and processing thereby allowing the users to pro-
vide informed and explicit consent. Since most websites use
plain language in their cookie notices to communicate these

purposes, we developed a machine learning model that pro-
cesses cookie notices and detects purpose declarations.

We use a dataset constructed by Santos et al. [45], who
manually examined declared purposes and other legal require-
ments in a sample of cookie notices from the 1300 most
visited English websites according to the Tranco ranking [37].
Their analysis is limited only to the first layer of cookie no-
tices, but given the large variety of cookie notice designs, we
expect the dataset to be rich enough to train models that gen-
eralize well to texts hidden in the subsequent cookie notice
layers. Santos et al. [45] state that the annotation procedure
of five researchers reached an agreement of 0.71-0.8 (Cohen’s
κ), which constitutes a substantial agreement according to
Sim et al. [46]. However, given that the sample size is small,
we simplify the task by merging the original labels into two
groups as follows:

Purposes for Analytics/Advertising (AA purpose):
profiling, advertising, custom content, analytics, and
social media features.

Other purposes: essential functionalities, offering service,
and website/UX enhancement.

We also pre-process the dataset by splitting its text into
sentences using spaCy’s pipeline and assigning labels to each
sentence. We end up with 1171 sentences, 163 of which are
labeled with an AA purpose.

We train a purpose detection BERT model [11] on this
dataset. Given a sentence, this model predicts whether it men-
tions AA purposes. We train it with 5-fold cross-validation
achieving an accuracy of 97.6% and an F1 score of 95.1%.

At test time, we split the text extracted during the crawl
into sentences similar to our pre-processing step and apply
the purpose detection model to each sentence. The website is
considered to have a declared AA purpose if it is detected in
at least one sentence.

4.2 Interactive elements model
We next build a model that allows the crawler to understand
the functionality of the cookie notice elements, and, in par-
ticular, determine which elements likely represent consent
options. We apply our text extraction method to crawl the
top 12k Tranco websites with a .uk extension. This results
in 2353 unique text samples extracted from interactive ele-
ments. We manually annotate each sample with one of the six
labels: accept, reject, close, save, settings, and other. One
of this paper’s authors annotated the entire set, while another
author validated 200 random samples, reaching an agreement
of Cohen’s κ = 91%, which is an almost perfect agreement
according to Sim et al. [46].

The accept, reject, close, and save labels correspond to
consent options that the user may click on to make cookie
notices disappear. The settings label corresponds to buttons
that the user clicks on to uncover more consent options. The



other label corresponds to negative samples that do not fall
into any of these categories. An annotation example is shown
in Fig. 2.

We train a BERT model on this dataset using 5-fold cross-
validation. It achieves an accuracy of 95.1% and an F1 score
of 90.9%.

4.3 Cookie classification model

We also build a model that decides for a set of cookies stored
by the website, whether the website uses AA cookies. First,
we use CookieBlock [4] to identify the purpose of each cookie
in the set. CookieBlock is an ensemble that classifies cookies
into one of four purposes, as defined by the UK ICC: neces-
sary, functional, analytics, and advertising. The model relies
on several features such as the cookie’s entropy, its expiry
date, and the edit distance between cookie updates. The fea-
tures also include one-hot encoding of popular cookie names
and domains. The model was trained on a dataset of cookies
that was collected after crawling 27k websites implementing
one of three CMPs—OneTrust, Cookiebot, and Termly—that
provide labels for individual cookies. The dataset does not
include CMP-specific cookies.

We re-train the model on a relabeled dataset where we
merge the necessary/functional and analytics/advertising la-
bels to match the categorization defined in Section 4.1. Then,
we classify the website as tracking only if at least τ cookies
were classified by CookieBlock as AA cookies. The threshold
τ is needed for the unlikely case that a false positive occurs
with the CookieBlock classification as we want to reduce the
risk of falsely classifying websites as using AA cookies when
they are not.

We evaluate the model on a dataset of 25k cookies collected
by Bollinger et al. [4] from 3000 websites using the Cookiebot
CMP, after opting out of consent. We train the model on the
245k cookies from the remaining 24k websites, collected after
opting in to consent. The results are summarized in Table 1.
We choose τ = 2 where we achieve a precision of 98.7% and a
recall of 91.8%. For our purposes, we would like our pipeline
to produce a reliable lower-bound estimation of how many
websites potentially violate privacy laws. We therefore aim to
achieve high precision scores even at the expense of a lower
recall, which justifies our choice of τ.

We additionally train the model on data from OneTrust
and Termly only (14k websites, 137k cookies). We evaluate
it on the same Cookiebot dataset and observe no significant
difference in performance as shown in Table 1. This shows
that the model is not biased towards the set of CMPs used for
training, and it can therefore be used on any of the websites
in our study.

All CMPs OneTrust+Termly
τ Precis. Recall Acc. Precis. Recall Acc.

1 96.6 98.4 96.2 96.0 96.9 94.6
2 98.7 91.8 92.9 98.6 91.7 92.8
3 99.3 79.0 83.0 99.3 77.6 82.7

Table 1: Evaluation of cookie classification model. “All
CMPs” include evaluation metrics of g(τ) trained on Cook-
iebot, OneTrust, or Termly websites. “OneTrust+Termly”
include the same metrics for g(τ) trained on OneTrust and
Termly websites. In both cases, the evaluation is performed
on Cookiebot websites.

5 Observed violations and dark patterns

In this section, we review the legal requirements for cookie
notices and describe the decision tree we implemented to
automate the detection of potential privacy violations and
dark patterns. We also present the results on our list of 97k
websites sampled from the Chrome User Experience Report,
as explained in Section 3.4. A summary decision tree for
privacy violations is shown in Fig. 3, and a similar tree for
dark patterns is shown in Fig. 5. Fig. 4 shows statistics on
observed violations and dark patterns.

Legal background. The GDPR [19] states that any process-
ing of personal information such as a name, an identification
number, or location data, shall be lawful only if and to the
extent that the data controller has a legal basis listed in Arti-
cle 6 of GDPR. Except for narrowly defined cases, including
Article 6(1)(b) of the GDPR which allows for the processing
of personal information to fulfill a legal contract (interpreted
narrowly in the Facebook case by the European Data Protec-
tion Board [16]), the only way to collect and process personal
data for the purposes of tracking and personalized advertising
is by a freely given, informed, explicit, and unambiguous
consent of the data subject to the specific purposes (Article 7
and Recital 32). Under the ePrivacy Directive [18], most on-
line marketing technologies and methods, including the use
of cookies [2], require valid consent unless they are strictly
necessary to provide the service (Article 5(3)).

The Data Protection Agencies (DPA) across EU member
states apply the principles of the GDPR and ePrivacy Di-
rective, although sometimes differing in their interpretation
thereof. Recent attempts to harmonize rules on cookie notices
across the EU have been more fruitful [17]. We focus our
attention on potential violations that have been directly chal-
lenged by a DPA in a member state included in our sample or
are clearly within the scope of the GDPR. Our findings can
further be disaggregated to member states to account for poten-
tial differences between DPAs and national legal requirements,
and we plan to explore these differences in future work.
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We refer to court cases and guidelines in the text of indi-
vidual violations and dark patterns, when applicable.

5.1 Observed violations
Out of a total of 97,090 websites, 92.8% were detected with a
supported language. The language detection failed on 3.4%
of the websites and 3.8% of the websites were detected with
an unsupported language. We successfully crawled 85,443
websites, i.e., 94.8% of the websites with a supported lan-
guage. We found that 90.2% of these websites contained at
least one privacy violation. We summarize the violations as
red bars in Fig. 4.

5.1.1 Missing cookie notice

A website’s failure to meet the elementary obligation of ob-
taining consent from the data subject is most apparent in the

case of websites that use AA cookies without a cookie notice.
A missing notice constitutes a privacy violation across the EU.
The French Data Protection Agency (CNIL) fined Amazon.fr
35M Euro, inter alia, for processing personal data without any
prior notice [39].

Of the 64,828 websites where AA cookies were detected
and most likely require consent, 32.0% were missing a cookie
notice. Even if we account for a false positive rate of 21.9%,
as shown in Section 7, 25.0% of websites are still missing
cookie notices.

5.1.2 Effect of interactive elements

No reject button. For consent to be freely given, websites
must offer a means to reject AA cookies. When the notice
makes rejection more difficult or time-consuming than accept-
ing cookies, it is considered coercion in some EU jurisdictions.
In a recent decision, the CNIL fined Google and Facebook
150M and 90M Euro, respectively [40] for failing to provide
a reject button when an accept button was present. These
websites required users to navigate to settings in order to re-
ject AA cookies. The same issue was deemed non-compliant
by the European cookie banner taskforce [17]. We there-
fore report a missing reject button as a violation when the
cookie notice contains an accept button without a matching
reject button. We found this violation on 56.7% of the 33,431
websites with notices that included an accept button.

Ignored reject. When websites contain a reject button, our
crawler inspects whether it correctly rejects all AA cookies.
Using AA cookies after negative consent would require an
alternative legal basis for data collection. Some websites, for
example, claim that using these cookies is possible under the
‘legitimate interest’ legal basis of Article 6(1)(f) of the GDPR.
However, the European cookie banner taskforce [17] has
made it clear that websites can not circumvent the ePrivacy
Directive consent requirement using GDPR legitimate interest.
A court decision on this is pending [8].



We detect AA cookies after clicking on the reject button
in 65.4% of the 16,231 websites that have a reject button in
their cookie notice. Only 16.2% of these websites rely on
legitimate interest. We believe that this violation results from
a combination of ignorance and malice by the website owners
and developers.

Implicit consent. The Court of Justice of the European
Union (CJEU) ruling in the case of Planet49 [30] confirmed
the German DPA interpretation of the GDPR and ePrivacy
Directive that pre-checked checkboxes on consent banners are
invalid forms of consent, apart from strictly necessary cookies.
The recent taskforce report [17] confirmed this requirement
and added that any form of inactivity (i.e., no interaction with
the cookie notice) should not constitute consent under the
GDPR or Article 5(3) of the ePrivacy Directive. We therefore
study the use of AA cookies before users interact with the
cookie notice. We denote this practice “Implicit consent prior
to interaction” and detect it in 73.4% of the 48,843 websites
that contain a cookie notice.

When a cookie notice has a close button, its functionality
should not be the same as accepting cookies, because this
violates the principle of positive and explicit consent as stated
above. We call this an “Implicit consent after close” violation
and detect it in 77.5% of the 4974 websites with a detected
close button in their cookie notice.

5.1.3 Undeclared cookie purposes

One of the conditions for lawful consent under the GDPR
(defined in Article 4(11)) is the specificity of the consent with
respect to the declared purposes. When websites use cook-
ies and other technologies for purposes that are not clearly
mentioned in the notice provided to the user, such actions are
likely to be deemed unlawful, as they are equivalent to acting
without explicit consent.

We found that 26.1% of the 48,843 websites with cookie
notices use AA cookies without declaring AA purposes in
the initial text of the cookie notice. If we further explore the
cookie notice, this number is reduced to 20.5%, since many
websites list details on processing purposes in the cookie
notice settings.

5.2 Observed dark patterns
The use of deceptive user interface designs to manipulate
users’ behaviors and choices is a murky area of law that
has attracted attention in recent years. These practices are
deployed to exploit, ultimately for profit, certain consumer
traits. In the case of cookie notices, dark patterns have been
found effective in nudging users [41]. The ability of online
service providers to manipulate user behavior and choice, as
well as extract consent for data sharing and tracking, has di-
rect implications for consumer autonomy and welfare [21],
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Figure 5: Decision tree for dark patterns in cookie notices.

and, therefore should be constantly monitored. Some of these
practices could be considered illegal under the GDPR in spe-
cific jurisdictions [24, 54] and under the new Digital Services
Act [20, Art. 25] for online platforms.

We implemented the detection of five dark patterns, specific
to cookie notices, as defined by Soe et al. [48]. Below are our
findings for two of these patterns. We skip the “Obstruction”
pattern as it overlaps with the “No reject button” violation,
which is a stricter observation. Similarly, “Sneaking” is cov-
ered by our analysis of legitimate interests in Section 5.1.2.
Finally, we skipped “Nagging” as we rarely observed this
pattern and it was not always reproducible. Our dark patterns
observations are summarized by the orange bars in Fig. 4.

5.2.1 Interface interference

Previous studies [48, 49] defined interface interference as a
‘design (color, font, size) of the buttons for accepting and
rejecting cookies are not equivalent.’ We analyze websites
that have a positive consent option (an accept button) and a
negative consent option (one of reject, save, or close buttons,
where the first one is selected in that order) on the first layer
of their cookie notice. For each button, we determine the
dominant color with a k-means analysis of its screenshot and
extract its text style (font, weight, and color). If we detect
a mismatch in the colors; or if the text font or weight of the
negative consent option is smaller than those of the positive
consent option, then we report an “Interface interference” dark
pattern. We consider two colors mismatched when their L∞

distance is higher than 255
4 . We manually evaluate this thresh-

old on 500 random websites and achieve 100% accuracy and
we therefore do not employ more complex alternatives [33].

We detected “Interface interference” in 67.8% of the
16,122 websites that had both positive and negative consent
options in the first layer of the cookie notice. This analysis
assumes that nonequivalent interface elements are favoring
the accept option, as it is impossible to pre-define what a
user would find more attractive without studying the design
language of each website in our sample.
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Figure 6: Ratio of websites with associated privacy violations,
per rank.

5.2.2 Forced action

Forced action can appear in different forms, the harshest one
being a “cookie wall” where a user can only enter the website
after accepting all types of cookies and tracking technologies.
Since such action might be considered illegal in some jurisdic-
tions, websites might find appealing lighter forms of forced
action to enhance acceptance rates. Previous studies [23, 48]
have defined the forced action dark pattern as any requirement
to engage with the cookie notice before entering the website.

For each website with a detected cookie notice, we sam-
ple five links not included in the cookie notice, and report
a “Forced action” if we fail to click on each of them. This
was detected in 46.4% of the 48,843 websites with a detected
cookie notice.

We report “Forced action” as a dark pattern according to
Gray et al. [23]. We however question whether this behavior
is an intentional deception. Bakos et al. [3] showed that
users fail to read legal notices, so requiring users to interact
could raise their privacy awareness. To distinguish whether
website designers act in good or bad faith, we tested this
pattern in combination with other violations, but the results
were inconclusive. Future studies could use a more fine-
grained definition for this dark pattern and investigate the
intentions more thoroughly.

5.3 Compliance by website popularity
The Chrome User Experience Report contains data on website
popularity in each country allowing us to report more fine-
grained results. We consider the popularity ranks (1k, 10k,
100k, and 500k)6 and demonstrate that more popular websites

6For this analysis, we crawled an additional 20k websites in the ranks
100k and 500k, sampled evenly across the countries selected in Section 3.4.
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Figure 7: Comparison of our results with other studies.

are more likely to include a cookie notice and a reject button
within the notice, as well as to list AA purposes. However,
they also tend to ignore user reject actions or assume implicit
consent. In other words, the popular websites keep a façade
of compliance, while in reality, they harvest more user data
than less popular websites [36].

We summarize observed violations depending on the popu-
larity rank in Fig. 6. Notice that the majority of the pairwise
observations are statistically significant. We use Fisher’s
exact test and apply the Holm–Bonferroni correction to the
p-values, rejecting the hypothesis that results come from the
same distribution when the p-value < 0.001. The significance
of these results is also confirmed by the monotonic change
in violations across ranks, with the exception of “Undeclared
purposes” and “Ignored reject” in the 500k rank.

6 Bias analysis

In this section, we reproduce results from previous studies
on potential violations that selected only websites employing
certain CMPs [4, 38, 41]. We demonstrate how this selection
criterion leads to a selection bias.

First, we compare the findings of each study to our findings
on our broader collection of websites. Then, we reconstruct
the selection of websites used in these studies using a combi-
nation of the Consent-O-Matic [28] CMP detection module
and IAB Europe’s Transparency & Consent Framework’s
API [15]. Fig. 7 summarizes our findings.

Comparison with Bollinger et al. Bollinger et al. [4] detect
the “Implicit consent prior to interaction” violation in 69.7%
of the 30k websites using one of the OneTrust, Cookiebot, or
Termly CMPs. We detect the same violation in 66.0% of the
9434 websites with these CMPs compared to 73.4% on our
broader collection of websites.

Bollinger et al. limit their analysis of the “Ignored reject”



violation to websites using Cookiebot, which they detect in
66.4% of the 9.6k websites. We detect this violation in 55.2%
of the 2323 Cookiebot websites with reject buttons and 65.4%
on the broader collection of websites. This might indicate a
slight improvement in compliance of Cookiebot from 66.4%
to 55.2% over the past two years.

For each violation, Fisher’s exact test rejects the hypothe-
sis that the violation ratio on all websites and the violation
ratio on the CMP-specific subset of websites come from the
same distribution with p-values < 0.001 after applying the
Holm–Bonferroni correction. This illustrates that the CMPs
selected by Bollinger et al. show a higher level of compliance
with consent requirements, despite not being fully compliant.

Comparison with Matte et al. Matte et al. [38] analyze
the “Implicit consent prior to interaction” and “Ignored reject”
violations on websites employing IAB Europe’s TCF [14].
They detect these violations in 10% and 5% of the websites,
respectively. Our analysis finds these violations in 85.6% of
the 9132 IAB TCF websites and 81.9% of the 2548 IAB TCF
websites with a reject button, respectively. This substantial
discrepancy between these results could be explained by a
difference in methodology. While we analyze all cookies set
by the website to determine whether a website uses AA cook-
ies, Matte et al. investigate whether IAB TCF websites use a
particular cookie (e.g., consent_cookie) to store the user’s
consent choice (e.g., tracking_allowed=True). Their mea-
surements therefore do not correspond to actual cookie usage.

Furthermore, we note a significant increase in detection ra-
tios for these violations compared to our results on the broader
collection of websites in Fig. 7. These results are statistically
significant, with p-values < 0.001 using the same test as
described above. Despite the strict evaluation criteria by
Matte et al., their sample induced a bias in the observations.

IAB was also the focus of the Belgian DPA, as they ques-
tioned IAB’s compliance with the GDPR, specifically the
permitted use of legitimate interest to track users [12, 53].
Our findings could be capturing the fact that several CMPs
stopped supporting IAB TCF as a result of the legal uncer-
tainty, leaving risk-seeking CMPs in our sample.

Comparison with Nouwens et al. Nouwens et al. [41] ana-
lyze the “Implicit consent prior to interaction” violation and
the “Forced action” dark pattern, which they find respectively
in 32.5% and 34.4% of 680 UK websites employing a CMP
among Cookiebot, Crownpeak, OneTrust, Quantcast, and
Trustarc.

Our analysis found these behaviors in 72.2% and 60.2% of
the 12.3k websites with these CMPs. The discrepancy with
the results of Nouwens et al. could be attributed to the small
number of websites covered by their study, which likely does
not accurately represent all websites using the selected CMPs.
The discrepancy in the implicit consent reporting could also

Violation/Dark pattern Precision Recall

Missing notice 78.1 94.3
No reject button 91.5 65.2
Ignored reject 90.7 62.8
Implicit consent after close 94.7 58.1
Implicit consent prior to interaction 91.2 86.5
Undeclared purposes 97.5 90.6
Interface interference 100.0 72.0
Forced action 100.0 83.8

Table 2: Evaluation of the violation and dark pattern detection
on 500 websites sampled randomly from the crawling list.

be attributed to a difference in methodology. They rely only
on cookie notices, while we also consider actual cookie usage.

The “Implicit consent prior to interaction” violation is ob-
served with a similar ratio (73.4%) on all websites. A se-
lection of multiple CMPs has averaged out the results for
this particular violation. We observe however a disparity for
the “Forced action” dark pattern that we find in 46.5% of
websites from the broader crawling list. We also observe
significant disparities for violations such as “No reject button”
and “Undeclared purposes,” again with p-values < 0.001.

7 Manual evaluation

Our methods for violation and dark pattern detection depend
on machine learning models and heuristics, which are prone
to false positives and negatives. To assess the performance
of our methods, we manually annotated 500 websites ran-
domly sampled from the crawling list. To manually determine
whether a website uses AA cookies, we rely on the platforms
Cookiepedia [42] and Cookiedatabase.org [7], which include
purpose annotations of cookies provided by human experts.
Note that these databases are skewed to classify cookies as
necessary [4] while our AA cookies detection might be cor-
rect. We skip cookies that do not have matching annotations
in these platforms to provide websites further benefit of the
doubt. For these reasons, the evaluation below is strict and
should serve as a lower bound on the performance of our meth-
ods. The results of the manual evaluation are summarized in
Table 2.

Missing cookie notice We identify a “Missing cookie no-
tice” violation when AA cookies are detected while a cookie
notice is not detected. The violation was correctly detected
in 82 out of 87 websites, and falsely detected in 24 websites.
This results in a precision of 78.1% and a recall of 94.3%.
The false positives mainly stem from false negatives in the
cookie notice detection (see Appendix A). We expect the pre-
cision to improve as the spaCy models and EasyList improve
over time, and particularly as the diversity of cookie notices



diminishes with the CMP market unification and increased
web development outsourcing.

No reject button The “No reject button” violation was
correctly detected in 107 out of 164 websites (recall 65.2%)
and falsely detected in 10 websites (precision 91.5%). Note
that the low recall stems from our conservative approach
to reduce false positives by only identifying a “No reject
button” violation if an accept button is detected. Without this
restriction, we would have a recall of 88.2% and a precision
of 85.6%.

Ignored reject The “Ignored reject” violation was correctly
detected in 49 out of 78 websites (recall 62.8%). It was incor-
rectly identified in 5 websites (precision 90.7%). These false
positives include one website where a close button was incor-
rectly detected as a reject button. The remaining four websites
had their reject button correctly identified but did not use AA
cookies according to Cookiepedia and Cookiedatabase.org.

Implicit consent The “Implicit consent after close” viola-
tion was correctly detected in 18 out of 31 websites (recall
58.1%) with one false positive (precision 94.7%). The “Im-
plicit consent prior to interaction” violation was correctly
detected in 186 out of 215 websites (recall 86.5%) and in-
correctly detected in 18 websites (precision 91.2%). The
false negatives are mainly due to undetected cookie notices
or undetected buttons, while the false positives are due to AA
cookies misclassification.

Undeclared purposes The “undeclared purpose” violation
was correctly detected in 77 out of 85 websites (recall 90.6%),
with two false positives (precision 97.5%). Six false nega-
tives resulted from undetected cookie notices. The other two
false negatives and the two false positives correspond to mis-
classifications by the purpose detection model. Overall, the
purpose detection model achieves a good performance despite
the small number of positive samples in the training set.

Dark patterns “Interface interference” and “Forced action”
were correctly detected in 60 out of 83 websites (recall 72%),
and 134 out of 160 websites (recall 83.8%), respectively. The
false negatives were mainly due to undetected cookie notices
or undetected buttons. Both dark patterns were detected with
100% precision.

8 Limitations

8.1 Translation inaccuracy
Since our work relies on the processing of natural language
rather than cookie notice APIs, we require machine transla-
tion to support multiple languages. We observed however

that LibreTranslate has trouble translating the short texts of
interactive elements in some languages. For example, the
Greek version of “Accept all cookies” translates to “Cookie
policy” in English. In this work, our solution depended on
the frequency of such mistakes. In languages where mis-
translations were rare, like German and Danish, we manually
fixed these wrongly translated texts. However, we removed
Greek websites completely, since the model performs poorly
on the majority of inputs. In the future, models will only
improve and such manual edits may no longer be necessary.
Alternatively, one can use better translation services such as
Google Translate or DeepL Translator, but their costs scale
poorly with crawling tens of thousands of websites. Nev-
ertheless, non-English speaking websites are understudied.
We therefore consider their inclusion, even using imperfect
translation, as a significant added value to the generalizability
of our study.

8.2 False violation reporting
We emphasize that the violations observed by our automated
procedure cannot be directly taken by a court or DPA to
enforce fines. Given the risks of false positives, one must
inspect and confirm them manually. We describe possible
reasons for false reporting by our procedure.

False positives. Our privacy violation and dark pattern de-
tection is dependent on machine learning models and heuris-
tics. The input of these models and heuristics are natural
language, cookie content, and cookie notice interface visu-
als, all of which are prone to ambiguous interpretation. Our
procedure can therefore falsely report violations.

We addressed this risk as follows. First, we train the mod-
els on a limited number of classes to observe the most crucial
aspect of whether data processing purpose requires consent
or not. Multi-label models would give more details on viola-
tion types at the cost of more false positives. Second, since
the cookie prediction model of Bollinger et al. [4] does not
achieve sufficient accuracy, we require observing multiple
AA cookies. This gives websites the benefit of the doubt
and restricts our observations only to websites that violate
requirements more seriously by having a larger number of
AA cookies.

We also evaluated the false positive rates on a set of 500
websites. We observed average false positive rates of 9.4%
and 0.0% for privacy violations and dark patterns, respectively.
Overall, we consider these rates to be low enough for our
observations to be representative of the compliance picture.

Ambiguity. Many cookie notices use vague statements such
as “This website uses cookies to improve user experience.”
The dataset by Santos et al. classifies these purposes as Web-
site/UX enhancement. However, as mentioned above, we
decided to simplify the problem to a binary classification.



Our decision to classify websites with this ambiguous state-
ment as non-AA purpose results in reporting them as violators
if they use AA cookies. We argue that even if this text de-
clares the cookies in use, the consent is still invalid since it is
ambiguous [19, Art. 7 and Rec. 32].

Regulation applicability. We base the consent require-
ments on EU privacy laws, mostly the GDPR. While the
websites in our dataset are located all over the world, our
reliance on the CrUX data ensures that a significant portion
of users come from countries where the GDPR is applicable.
If these websites target a significant portion of EU citizens
and profit from this user base, they are also required to follow
the GDPR [19, Art. 3]. When the CrUX data is imprecise,
the number of website visitors from the EU could be checked
using other paid sources, such as Similarweb [47].

8.3 Bias

One of our goals is to address the bias present in prior studies.
However, our methods are themselves still prone to some
biases. First, the CrUX list is based on only Chrome users
who participate in the data collection. It is likely that these
users are less privacy-aware and might visit different websites
than average users. We used the CrUX list as recommended
by Ruth et al. [43], who showed that biases related to crawl-
ing lists can only be measured by large Internet companies.
Second, our traffic originates in Germany. While it is possible
that websites treat German users differently from those from
other EU countries, we expect such behavior to be rare, and
we have not evaluated this due to computational requirements.
Third, Degeling et al. [9] and Kampanos et al. [31] find that
different countries can show different trends. Therefore, our
country selection could cause a bias that can be addressed
given translation resources for the missing languages.

8.4 Adversarial modifications

We did not address websites that might modify their cookie
notice and cookie content to counterattack our models. Prior
to the publication of this work, our NLP models were closed-
source, so websites could not modify their notices to evade
our detection. Our reported results should therefore be free of
adversarial modifications. Whether websites will later modify
their cookie notices to fool our detection classification meth-
ods is a topic for future work. Observing websites designing
notices deceptive not only to users (dark patterns) but also
to automated methods like ours would be an interesting le-
gal case study on whether it is an intentional infringement
according to Art. 83 of the GDPR.

9 Related work

Several studies have focused on websites’ non-compliance
with privacy regulations. We restrict our comparison
to studies of cookie notices. We also refer readers to a
meta-study by Kretschmer et al. [34], which summarizes
empirical publications measuring GDPR impact on cookie
notices and privacy policies.

Long-term studies Hils et al. [26] studied the emergence
of CMPs and their influence on data collection consent from
January 2018 to September 2020. They measured the pop-
ularity of six major CMPs and their market competition in
the context of court decisions, fines, and new laws. They also
surveyed the defined data processing purposes assigned to
vendors and observed that accepting cookies takes less time
than declining them. Degeling et al. [9] studied the adoption
of cookie notices after the GDPR was enacted, finding that the
presence of cookie notices increased by a third from January
to May 2018. They also manually inspected what choices the
notices offer, finding that the vast majority provided either no
option or only an accept-all option.

Trevisan et al. [50] measured implicit consent prior to in-
teraction with cookie notice. They detect websites’ usage of
AA cookies when at least one 3rd-party cookie is created by
a domain in Ghostery or Disconnect advertising lists. Their
AA cookie detection is therefore prone to falsely flagging
advertiser’s cookies that remain empty until the user consents
to tracking, as many vendors do. Our work does not have this
limitation and it can also detect 1st-party trackers. Trevisan
et al. sampled websites from Similarweb, taking the top 100
websites of 25 EU countries and 25 categories, totaling almost
36k websites. They showed that 49% of the websites use such
cookies prior to consent. They also investigated violations
on a smaller sample over the period of four years, finding
negligible differences in compliance. In a follow-up work by
similar authors, Jho et al. [29] studied websites after accept-
ing all cookies. They implemented an accept-button detector
based on a keyword search with 95% accuracy. Our interac-
tive element model achieves a similar accuracy for multi-class
classification, allowing us to inspect cookie usage not only
after accepting all cookies but also after taking other actions.

CMPs and Transparency & Consent Framework (TCF)
Bollinger et al. [4] studied the compliance of websites with the
OneTrust, Cookiebot, and Termly CMPs. They detected the
presence of these CMPs on almost 27k websites from the 7M
Tranco list. They reported eight types of violations that were
observable given the data that these specific CMPs contained,
observing that only 5.3% of websites were compliant with
these requirements. Note that most violations reported in
their work require websites to declare detailed per-cookie
information, which is only provided by a few CMPs and is
not required by privacy regulations. We do not include these



violations as we would like our methods to be applicable on
websites independent of CMP implementations.

Nouwens et al. [41] investigated consent on 680 websites
of the top 10k UK Alexa list that use one of the Cookiebot,
Cronwpeak, OneTrust, QuantCast, or TrustArc CMPs. They
observe implicit consent, forced action, and pre-checked op-
tions, finding that only 11.8% of the websites are compliant.

Matte et al. [38] focused on websites with a CMP imple-
menting IAB TCF. They observed the “Implicit consent prior
to interaction” violation in 10% of the websites and the “Ig-
nored reject” violation in 5% of the websites. We compare
our results to all three studies and analyze their selection bias
in Section 6.

Opt-out functionality Sanchez-Rola et al. [44] manually
inspected cookie notice options shown to users from the EU,
US, and China. Surprisingly, they found that cookie notices
shown to EU users had fewer options and that the “ignored
reject” violation was observed more in the EU than in the US
or China. This analysis is complementary to our work.

Khandelwal et al. [32] developed an extension that auto-
matically fills out cookie notices. They relied on two machine
learning models. The first model determines, given an HTML
element’s text, whether it corresponds to a cookie notice. The
second model takes as input the cookie notice in a machine-
readable format and predicts the set of actions needed to dis-
able non-essential cookies. They also analyze cookie notices
on the top 100k Tranco websites, showing that they detect
cookie notices in 52.7% of the websites, that 35.4% of the
notices had multiple layers, and that 21.5% of the notices
include a one-click opt-out option. In their analysis, Khandel-
wal et al. neither studied compliance with respect to privacy
regulations nor did they condition their analysis on cookie
usage or declared purposes as we do.

Dark patterns Soe et al. [48] studied five dark patterns
on 300 news websites popular with EU users. They found
that only three websites do not use any of the dark patterns
they consider. Our dark patterns methods used the definitions
from their work, but we observed “Interface interference” and
“Forced action” patterns more often than Soe et al. This might
be caused by the low reliability of the manual work that they
report (inter-annotator agreement of 0.67).

Krisam et al. [35] studied popular German websites, finding
that 85% of the websites nudge users to accept all cookies
and that only 21.5% of the websites contain a reject button.
We observed significantly more reject buttons, likely as a
result of the fines imposed on Google and Facebook for this
violation [40].

Kampanos et al. [31] used a crawler that detects cookie
notices using EasyList and detects consent choices. They
crawled 17k top websites from the UK and Greece and found
cookie notices in 44% of websites and an opt-out option in
only 6% of the websites. However, their analysis only focuses

on the first layer of cookie notices. Moreover, the detection
of consent options is keyword-based, which is only able to
detect 56.7% of accept buttons and 33.4% of reject buttons
found by our models.

10 Conclusion

We have developed and applied machine learning methods
to the first general, automated, large-scale analysis of cookie
notice compliance. The resulting system interacts with a wide
variety of intricate cookie notices, identifying their interac-
tive elements, determining which cookies are declared, and
retrieving the cookies used by the website.

Thanks to our method, we have analyzed a much larger
and more representative sample of the websites within the
GDPR jurisdiction than previous studies, overcoming their
limitations. As a result, we have provided corrected statistics
for previous studies, which suffered from a selection bias, and
new statistics for certain types of violations and dark patterns.
Even after these corrections, we still observe a significant
prevalence of potential violations. Indeed, 65.4% of websites
ignore user choices when they explicitly reject consent and
90.2% of websites violate at least one of the requirements
checked by our methods. Furthermore, we discovered that
more popular websites are more likely to ignore user choices
despite having more compliant cookie notice interfaces. This
highlights the need for more enforcement to catch privacy
violations, which automated methods such as ours can foster.

As future work, we plan to investigate the influence of in-
dividual CMPs and the crawl’s IP location on website compli-
ance, utilizing our rich multilingual sample. For example, we
aim to determine whether websites paying for CMPs comply
more or less than those websites using free services. We also
plan to monitor compliance over time, measuring the effects
of new regulations (like the Digital Marketing Act, the Dig-
ital Services Act, and the planned ePrivacy Regulation), new
court decisions, and new privacy-preserving technologies.
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"Tranco: A research-oriented top sites ranking hard-
ened against manipulation". In Proceedings of the 26th
Annual Network and Distributed System Security Sym-
posium, NDSS 2019, February 2019.

[38] C. Matte, N. Bielova, and C. Santos. Do cookie ban-
ners respect my choice? Measuring legal compliance of
banners from IAB Europe’s Transparency and consent
framework. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 791–809, 2020.

[39] Commission nationale de l’informatique et des libertés
(CNIL). Délibération SAN-2020-013 du 7 décem-
bre 2020, 2020. https://www.legifrance.gouv.fr/
cnil/id/CNILTEXT000042635729; Last accessed on:
2023.02.01.

[40] Commission nationale de l’informatique et des libertés
(CNIL). Cookies: the CNIL fines Google a total
of 150 million euros and Facebook 60 million euros
for non-compliance with French legislation, January
2022. https://www.cnil.fr/en/cookies-cnil-
fines-google-total-150-million-euros-and-
facebook-60-million-euros-non-compliance;
Last accessed on: 2023.01.30.

[41] Midas Nouwens, Ilaria Liccardi, Michael Veale, David
Karger, and Lalana Kagal. Dark patterns after the gdpr:

https://github.com/cavi-au/Consent-O-Matic
https://github.com/cavi-au/Consent-O-Matic
http://curia.europa.eu/juris/document/document.jsf?docid=218462&doclang=EN
http://curia.europa.eu/juris/document/document.jsf?docid=218462&doclang=EN
https://www.legifrance.gouv.fr/cnil/id/CNILTEXT000042635729
https://www.legifrance.gouv.fr/cnil/id/CNILTEXT000042635729
https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-million-euros-non-compliance
https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-million-euros-non-compliance
https://www.cnil.fr/en/cookies-cnil-fines-google-total-150-million-euros-and-facebook-60-million-euros-non-compliance


Scraping consent pop-ups and demonstrating their influ-
ence. In Proceedings of the 2020 CHI conference on
human factors in computing systems, pages 1–13, 2020.

[42] OneTrust. Cookiepedia. https://
cookiepedia.co.uk/; Last accessed on 2023.07.11.

[43] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke
Valenta, and Zakir Durumeric. Toppling top lists: Eval-
uating the accuracy of popular website lists. In Proceed-
ings of the 22nd ACM Internet Measurement Conference,
IMC ’22, page 374–387, New York, NY, USA, 2022.
Association for Computing Machinery.

[44] Iskander Sanchez-Rola, Matteo Dell’Amico, Platon
Kotzias, Davide Balzarotti, Leyla Bilge, Pierre-Antoine
Vervier, and Igor Santos. “Can I opt out yet?”: GDPR
and the global illusion of cookie control. In Proceed-
ings of the 2019 ACM Asia Conference on Computer and
Communications Security, Asia CCS ’19, page 340–351,
New York, NY, USA, 2019. Association for Computing
Machinery.

[45] Cristiana Santos, Arianna Rossi, Lorena Sánchez
Chamorro, Kerstin Bongard-Blanchy, and Ruba Abu-
Salma. Cookie banners, what’s the purpose? Analyz-
ing cookie banner text through a legal lens. CoRR,
abs/2110.02597, 2021.

[46] Julius Sim and Chris C Wright. The Kappa statistic in
reliability studies: Use, interpretation, and sample size
requirements. Physical Therapy, 85(3):257–268, 03
2005.

[47] Similarweb. Website traffic – check and analyze any
website. https://www.similarweb.com/; Last ac-
cessed on: 2023.10.01.

[48] Than Htut Soe, Oda Elise Nordberg, Frode Guribye,
and Marija Slavkovik. Circumvention by design-dark
patterns in cookie consent for online news outlets. In
Proceedings of the 11th Nordic Conference on Human-
Computer Interaction: Shaping Experiences, Shaping
Society, pages 1–12, 2020.

[49] Alina Stöver, Nina Gerber, Christin Cornel, Mona Henz,
Karola Marky, Verena Zimmermann, and Joachim Vogt.
Website operators are not the enemy either - Analyz-
ing options for creating cookie consent notices without
dark patterns. In Karola Marky, Uwe Grünefeld, and
Thomas Kosch, editors, Mensch und Computer 2022 -
Workshopband, Bonn, 2022. Gesellschaft für Informatik
e.V.

[50] Martino Trevisan, Stefano Traverso, Eleonora Bassi,
and Marco Mellia. 4 years of EU cookie law: Results
and lessons learned. Proceedings on Privacy Enhancing
Technologies, 2019:126–145, 04 2019.

[51] Tobias Urban, Martin Degeling, Thorsten Holz, and
Norbert Pohlmann. Beyond the front page: Measuring
third party dynamics in the field. In Proceedings of The
Web Conference 2020, page 1275–1286, New York, NY,
USA, 2020. Association for Computing Machinery.

[52] Christine Utz, Martin Degeling, Sascha Fahl, Florian
Schaub, and Thorsten Holz. (Un)informed consent:
Studying GDPR consent notices in the field. CoRR,
abs/1909.02638, 2019.

[53] Michael Veale, Midas Nouwens, and Cristiana Santos.
Impossible asks: Can the Transparency and Consent
Framework ever authorise real-time bidding after the
Belgian DPA decision? Technology and Regulation,
pages 12–22, 2022.

[54] Amit Zac, Yun-Chun Huang, Amédée von Moltke,
Christopher Decker, and Ariel Ezrachi. Dark patterns
and online consumer vulnerability. Available at SSRN
4547964, 2023.

A Cookie notice detection evaluation

We evaluate the cookie notice detection on the same 500
websites on which we performed the manual evaluation (Sec-
tion 7). We achieve 100.0% precision and 86.9% recall.

As baselines, we compare to the cookie notice detection
implemented by Khandelwal et al. [32] and Kampanos et
al. [31]. Khandelwal et al. detect cookie notices using a
BERT model that classifies the text of HTML elements with
a positive z-index. Additionally, they consider the first 3 and
last three HTML elements. We collect a dataset on which we
train a similar BERT model following the steps described in
their paper. We translate non-English text to English using
LibreTranslate before feeding it to the BERT model. We
achieve 97.4% precision and 78.2% recall with this method.

Kampanos et al. [31] rely on EasyList selectors to select
candidate cookie notice elements. They filter them solely
based on the presence of the word “cookie.” We achieve 98.8%
precision and 48.1% recall with this method.

Our cookie notice detection method therefore outperforms
methods from prior studies in both precision and recall. Our
use of both the z-index and the EasyList selectors to identify
candidate cookie notice elements allows us to detect more
cookie notices than these methods. We also avoid false posi-
tives, which correspond to page footers containing the word
“cookie”. Moreover, our method is significantly faster than
Khandelwal et al.’s method since they depend on a BERT
model that is more computationally expensive than the spaCy
models we use.
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Language Countries LT spaCy Us

Bulgarian BG
Croatian HR
Czech CZ ✓
Danish DK ✓ ✓ ✓
Dutch BE, LU, NL ✓ ✓ ✓
English IE ✓ ✓ ✓
Estonian EE
Finnish FI ✓ ✓ ✓
French BE, FR, LU ✓ ✓ ✓
German AT, BE, DE ✓ ✓ ✓
Greek GR ✓ ✓
Hungarian HU ✓
Irish IE ✓
Italian IT ✓ ✓ ✓
Latvian LV
Lithuanian LT ✓
Maltese MT
Portuguese PT ✓ ✓ ✓
Polish PL ✓ ✓ ✓
Romanian RO ✓
Slovak SK ✓
Slovenian SI
Spanish ES ✓ ✓ ✓
Swedish SE ✓ ✓ ✓

Table 3: List of common languages in the EU along with
the countries where they are official. For each language we
indicate whether it is supported by LibreTranslate (LT), spaCy,
and our crawler (Us).

B Violations

Ignored save/Prefilled purposes. The Court of Justice of
the European Union (CJEU) ruling in the case of [30] con-
firmed the German DPA interpretation of the GDPR and ePri-
vacy Directive that pre-checked checkboxes on consent ban-
ners are invalid forms of consent, apart from strictly necessary
cookies. The taskforce report confirmed, on the European
level, that pre-ticked boxes to opt-in do not lead to valid con-
sent, as well as that inactivity (i.e., without positive action by
the user) should not constitute consent under the GDPR or
Article 5(3) of the ePrivacy Directive [17].

We report an “Ignored save/Prefilled purposes” violation
when AA cookies are detected after clicking on “Save.” We
observe this behavior in 69.0% of the 12,951 websites with a
detected save button. We achieve a precision of 91.1% and a
recall of 66.1% on the manually annotated dataset introduced
in Section 7.
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